skip to main content


Search for: All records

Creators/Authors contains: "McMahon, Peter L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  5. Abstract Deep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10 −19  J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies. 
    more » « less
  6. Abstract Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability 1 . Deep-learning accelerators 2–9 aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far 10–22 have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics 23–26 , materials 27–29 and smart sensors 30–32 . 
    more » « less
  7. Abstract With rapid progress across platforms for quantum systems, the problem of many-body quantum state reconstruction for noisy quantum states becomes an important challenge. There has been a growing interest in approaching the problem of quantum state reconstruction using generative neural network models. Here we propose the ‘attention-based quantum tomography’ (AQT), a quantum state reconstruction using an attention mechanism-based generative network that learns the mixed state density matrix of a noisy quantum state. AQT is based on the model proposed in ‘Attention is all you need’ by Vaswani et al (2017 NIPS ) that is designed to learn long-range correlations in natural language sentences and thereby outperform previous natural language processing (NLP) models. We demonstrate not only that AQT outperforms earlier neural-network-based quantum state reconstruction on identical tasks but that AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer. We speculate the success of the AQT stems from its ability to model quantum entanglement across the entire quantum system much as the attention model for NLP captures the correlations among words in a sentence. 
    more » « less